If 1 - x2 => 0 :
int ( 1 + x2 ) / | 1 - x2 | dx
= int ( 1 + x2 ) / ( 1 - x2 ) dx
= int ( x2 - 1 + 2 ) / ( 1 - x2 ) dx
= int -1 + 2 / ( 1 - x2 ) dx
= int -1 + 2 / [(1 - x)(1 + x)] dx
2 / [(1 - x)(1 + x)] = a / (1 - x) + b / (1 + x)
=> 2 = a(1 + x) + b(1 - x) = a + ax + b - bx = (a - b)x + a + b
=> a = b and a + b = 2
=> a = 1 and b = 1
So :
int ( 1 + x2 ) / | 1 - x2 | dx
= int -1 + 1 / (1 - x) + 1 / (1 + x) dx
= int -1 - (-1) / (1 - x) + 1 / (1 + x) dx
= [-x - ln(|1 - x|) + ln(|1 + x|)]
Can you do 1 - x2 < 0 ?
No comments:
Post a Comment